
This page was exported from - Valid Premium Exam
Export date: Thu Nov 14 4:33:43 2024 / +0000 GMT

2024 Updated Verified Terraform-Associate-003 dumps Q&As - 100% Pass
Guaranteed [Q66-Q81

	

2024 Updated Verified Terraform-Associate-003 dumps Q&As - 100% Pass Guaranteed Provide Valid Dumps To Help You
Prepare For HashiCorp Certified: Terraform Associate (003) Exam

HashiCorp Terraform-Associate-003 Exam Syllabus Topics:
TopicDetailsTopic 1- Manage resource lifecycle: The section covers topics such as Initializing a configuration using terraform init

and its options and generating an execution plan using terraform plan and its options. It also covers the configuration changes

using Terraform Apply and its options.Topic 2- Develop collaborative Terraform workflows: In this section, candidates are

tested for their skills related to managing the Terraform binary, providers, and modules using version constraints and setting

up remote states. It also covers the utilization of the Terraform workflow in automation.Topic 3- Create, maintain, and use

Terraform modules: In this section of the exam, candidates are tested for creating a module, using a module in configuration,

and topics such as refactoring an existing configuration into modules.

Q66. Once you configure a new Terraform backend with a terraform code block, which command(s) should you use to migrate the

state file?

* terraform destroy, then terraform apply

2024 Updated Verified Terraform-Associate-003 dumps Q&As - 100% Pass Guaranteed [Q66-Q81] | Page 1/7 |

https://premium.validexam.com/?p=1656
https://premium.validexam.com/?p=1656

This page was exported from - Valid Premium Exam
Export date: Thu Nov 14 4:33:45 2024 / +0000 GMT

* terraform init

* terraform push

* terraform apply

Explanation

This command will initialize the new backend and prompt you to migrate the existing state file to the new location4. The other

commands are not relevant for this task.

Q67. Which of the following is not a valid source path for specifying a module?

* source – “github.com/hashicorp/examplePref-ul.0.8M

* source = “./module?version=vl.6.0”

* source – “hashicorp/consul/aws”

* source – “./module”

Terraform modules are referenced by specifying a source location. This location can be a URL or a file path. However, specifying

query parameters such as ?version=vl.6.0 directly within the source path is not a valid or supported method for specifying a module

version in Terraform. Instead, version constraints are specified using the version argument within the module block, not as part of

the source string.

Reference = This clarification is based on Terraform’s official documentation regarding module usage, which outlines the

correct methods for specifying module sources and versions.

Q68. Terraform providers are part of the Terraform core binary.

* True

* False

Terraform providers are not part of the Terraform core binary. Providers are distributed separately from Terraform itself and have

their own release cadence and version numbers. Providers are plugins that Terraform uses to interact with various APIs, such as

cloud providers, SaaS providers, and other services. You can find and install providers from the Terraform Registry, which hosts

providers for most major infrastructure platforms. You can also load providers from a local mirror or cache, or develop your own

custom providers. To use a provider in your Terraform configuration, you need to declare it in the provider requirements block and

optionally configure its settings in the provider block. Reference = : Providers – Configuration Language | Terraform :

Terraform Registry – Providers Overview | Terraform

Q69. What does this code do?

* Requires any version of the AWS provider > = 3.0 and <4.0

* Requires any version of the AWS provider >= 3.0

* Requires any version of the AWS provider > = 3.0 major release. like 4.1

* Requires any version of the AWS provider > 3.0

This is what this code does, by using the pessimistic constraint operator (~>), which specifies an acceptable range of versions for a

provider or module.

Q70. Only the user that generated a plan may apply it.

* True

* False

2024 Updated Verified Terraform-Associate-003 dumps Q&As - 100% Pass Guaranteed [Q66-Q81] | Page 2/7 |

https://premium.validexam.com/?p=1656
https://premium.validexam.com/?p=1656

This page was exported from - Valid Premium Exam
Export date: Thu Nov 14 4:33:46 2024 / +0000 GMT

Explanation

Any user with permission to apply a plan can apply it, not only the user that generated it. This allows for collaboration and

delegation of tasks among team members.

Q71. You have created a main.tf Terraform configuration consisting of an application server, a database and a load balanced. You

ran terraform apply and Terraform created all of the resources successfully.

Now you realize that you do not actually need the load balancer, so you run terraform destroy without any flags. What will happen?

* Terraform will prompt you to pick which resource you want to destroy

* Terraform will destroy the application server because it is listed first in the code

* Terraform will prompt you to confirm that you want to destroy all the infrastructure

* Terraform will destroy the main, tf file

* Terraform will immediately destroy all the infrastructure

Explanation

This is what will happen if you run terraform destroy without any flags, as it will attempt to delete all the resources that are

associated with your current working directory or workspace. You can use the -target flag to specify a particular resource that you

want to destroy.

Q72. You have multiple team members collaborating on infrastructure as code (IaC) using Terraform, and want to apply formatting

standards for readability.

How can you format Terraform HCL (HashiCorp Configuration Language) code according to standard Terraform style convention?

* Run the terraform fmt command during the code linting phase of your CI/CD process Most Voted

* Designate one person in each team to review and format everyone’s code

* Manually apply two spaces indentation and align equal sign “=” characters in every Terraform file (*.tf)

* Write a shell script to transform Terraform files using tools such as AWK, Python, and sed

The terraform fmt command is used to rewrite Terraform configuration files to a canonical format and style.

This command applies a subset of the Terraform language style conventions, along with other minor adjustments for readability.

Running this command on your configuration files before committing them to source control can help ensure consistency of style

between different Terraform codebases, and can also make diffs easier to read. You can also use the -check and -diff options to

check if the files are formatted and display the formatting changes respectively2. Running the terraform fmt command during the

code linting phase of your CI/CD process can help automate this process and enforce the formatting standards for your team.

References = [Command: fmt]2

Q73. A Terraform provider is NOT responsible for:

* Exposing resources and data sources based on an APUI

* Managing actions to take based on resources differences

* Understanding API interactions with some service

* Provisioning infrastructure in multiple

Explanation

This is not a responsibility of a Terraform provider, as it does not make sense grammatically or logically. A Terraform provider is

responsible for exposing resources and data sources based on an API, managing actions to take based on resource differences, and

understanding API interactions with some service.

Q74. How can you trigger a run in a Terraform Cloud workspace that is connected to a Version Control System (VCS) repository?

* Only Terraform Cloud organization owners can set workspace variables on VCS connected workspaces

2024 Updated Verified Terraform-Associate-003 dumps Q&As - 100% Pass Guaranteed [Q66-Q81] | Page 3/7 |

https://premium.validexam.com/?p=1656
https://premium.validexam.com/?p=1656

This page was exported from - Valid Premium Exam
Export date: Thu Nov 14 4:33:46 2024 / +0000 GMT

* Commit a change to the VCS working directory and branch that the Terraform Cloud workspace is connected to

* Only Terraform Cloud organization owners can approve plans in VCS connected workspaces

* Only members of a VCS organization can open a pull request against repositories that are connected to Terraform Cloud

workspaces

This will trigger a run in the Terraform Cloud workspace, which will perform a plan and apply operation on the infrastructure

defined by the Terraform configuration files in the VCS repository.

Q75. Which of these ate secure options for storing secrets for connecting to a Terraform remote backend? Choose two correct

answers.

* A variable file

* Defined in Environment variables

* Inside the backend block within the Terraform configuration

* Defined in a connection configuration outside of Terraform

Environment variables and connection configurations outside of Terraform are secure options for storing secrets for connecting to a

Terraform remote backend. Environment variables can be used to set values for input variables that contain secrets, such as backend

access keys or tokens. Terraform will read environment variables that start with TF_VAR_ and match the name of an input variable.

For example, if you have an input variable called backend_token, you can set its value with the environment variable

TF_VAR_backend_token1. Connection configurations outside of Terraform are files or scripts that provide credentials or other

information for Terraform to connect to a remote backend. For example, you can use a credentials file for the S3 backend2, or a shell

script for the HTTP backend3. These files or scripts are not part of the Terraform configuration and can be stored securely in a

separate location. The other options are not secure for storing secrets. A variable file is a file that contains values for input variables.

Variable files are usually stored in the same directory as the Terraform configuration or in a version control system. This exposes the

secrets to anyone who can access the files or the repository. You should not store secrets in variable files1. Inside the backend block

within the Terraform configuration is where you specify the type and settings of the remote backend. The backend block is part of

the Terraform configuration and is usually stored in a version control system. This exposes the secrets to anyone who can access the

configuration or the repository. You should not store secrets in the backend block4. Reference = [Terraform Input Variables]1,

[Backend Type: s3]2, [Backend Type: http]3, [Backend Configuration]4

Q76. You should run terraform fnt to rewrite all Terraform configurations within the current working directory to conform to

Terraform-style conventions.

* True

* False

You should run terraform fmt to rewrite all Terraform configurations within the current working directory to conform to

Terraform-style conventions. This command applies a subsetof the Terraform language style conventions, along with other minor

adjustments for readability. It is recommended to use this command to ensure consistency of style across different Terraform

codebases. The command is optional, opinionated, and has no customization options, but it can help you and your team understand

the code more quickly and easily. References = : Command: fmt : Using Terraform fmt Command to Format Your Terraform Code

Q77. Which of these statements about Terraform Cloud workspaces is false?

* They have role-based access controls

* You must use the CLI to switch between workspaces

* Plans and applies can be triggered via version control system integrations

* They can securely store cloud credentials

The statement that you must use the CLI to switch between workspaces is false. Terraform Cloud workspaces are different from

Terraform CLI workspaces. Terraform Cloud workspaces are required and represent all of the collections of infrastructure in an

organization. They are also a major component of role-based access in Terraform Cloud. You can grant individual users and user

groups permissions for one or more workspaces that dictate whether they can manage variables, perform runs, etc. You can create,

view, and switch between Terraform Cloud workspaces using the Terraform Cloud UI, the Workspaces API, or the Terraform

Enterprise Provider5. Terraform CLI workspaces are optional and allow you to create multiple distinct instances of a single

configuration within one working directory. They are useful for creating disposable environments for testing or experimenting

2024 Updated Verified Terraform-Associate-003 dumps Q&As - 100% Pass Guaranteed [Q66-Q81] | Page 4/7 |

https://premium.validexam.com/?p=1656
https://premium.validexam.com/?p=1656

This page was exported from - Valid Premium Exam
Export date: Thu Nov 14 4:33:46 2024 / +0000 GMT

without affecting your main or production environment. You can create, view, and switch between Terraform CLI workspaces using

the terraform workspace command6. The other statements about Terraform Cloud workspaces are true. They have role-based access

controls that allow you to assign permissions to users and teams based on their roles and responsibilities. You can create and manage

roles using the Teams API or the Terraform Enterprise Provider7. Plans and applies can be triggered via version control system

integrations that allow you to link your Terraform Cloud workspaces to your VCS repositories. You can configure VCS settings,

webhooks, and branch tracking to automate your Terraform Cloud workflow8. They can securely store cloud credentials as sensitive

variables that are encrypted at rest and only decrypted when needed. You can manage variables using the Terraform Cloud UI, the

Variables API, or the Terraform Enterprise Provider9. Reference = [Workspaces]5, [Terraform CLI Workspaces]6, [Teams and

Organizations]7, [VCS Integration]8, [Variables]9

Q78. Which of the following statements about Terraform modules is not true?

* Modules can call other modules

* A module is a container for one or more resources

* Modules must be publicly accessible

* You can call the same module multiple times

Explanation

This is not true, as modules can be either public or private, depending on your needs and preferences. You can use the Terraform

Registry to publish and consume public modules, or use Terraform Cloud or Terraform Enterprise to host and manage private

modules.

Q79. How would you reference the volume IDs associated with the ebs_block_device blocks in this configuration?

* aws_instance.example.ebs_block_device[sda2,sda3).volume_id

* aws_lnstance.example.ebs_block_device.[*].volume_id

* aws_lnstance.example.ebs_block_device.volume_ids

* aws_instance.example-ebs_block_device.*.volume_id

This is the correct way to reference the volume IDs associated with the ebs_block_device blocks in this configuration, using the

splat expression syntax. The other options are either invalid or incomplete.

Q80. A developer accidentally launched a VM (virtual machine) outside of the Terraform workflow and ended up with two servers

with the same name. They don’t know which VM Terraform manages but do have a list of all active VM IDs.

Which of the following methods could you use to discover which instance Terraform manages?

* Run terraform state list to find the names of all VMs, then run terraform state show for each of them to find which VM ID

Terraform manages

2024 Updated Verified Terraform-Associate-003 dumps Q&As - 100% Pass Guaranteed [Q66-Q81] | Page 5/7 |

https://premium.validexam.com/?p=1656
https://premium.validexam.com/?p=1656

This page was exported from - Valid Premium Exam
Export date: Thu Nov 14 4:33:47 2024 / +0000 GMT

* Update the code to include outputs for the ID of all VMs, then run terraform plan to view the outputs

* Run terraform taint/code on all the VMs to recreate them

* Use terraform refresh/code to find out which IDs are already part of state

Explanation

The terraform state list command lists all resources that are managed by Terraform in the current state file1. The terraform state

show command shows the attributes of a single resource in the state file2. By using these two commands, you can compare the VM

IDs in your list with the ones in the state file and identify which one is managed by Terraform.

Q81. You ate creating a Terraform configuration which needs to make use of multiple providers, one for AWS and one for Datadog.

Which of the following provider blocks would allow you to do this?

*

*

*

*

2024 Updated Verified Terraform-Associate-003 dumps Q&As - 100% Pass Guaranteed [Q66-Q81] | Page 6/7 |

https://premium.validexam.com/?p=1656
https://premium.validexam.com/?p=1656

This page was exported from - Valid Premium Exam
Export date: Thu Nov 14 4:33:52 2024 / +0000 GMT

Option C is the correct way to configure multiple providers in a Terraform configuration. Each provider block must have a name

attribute that specifies which provider it configures2. The other options are either missing the name attribute or using an invalid

syntax.

	

	

Achieve Success in Actual Terraform-Associate-003 Exam Terraform-Associate-003 Exam Dumps:
https://www.validexam.com/Terraform-Associate-003-latest-dumps.html]

2024 Updated Verified Terraform-Associate-003 dumps Q&As - 100% Pass Guaranteed [Q66-Q81] | Page 7/7 |

https://premium.validexam.com/?p=1656
https://www.validexam.com/Terraform-Associate-003-latest-dumps.html
https://premium.validexam.com/?p=1656

